Radar

Notation

- F Receiver noise factor
- G_r Receiver gain
- G_t Transmitter gain
- L General loss factor
- P_r Received power (Watts)
- P_t Transmit power (Watts)
- R_r Range from receiver to target (m)

If the radar is monostatic then $G_r = G_t$ and $R_r = R_t$.

1. Radar equation

$$P_r = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 R_t^2 R_r^2 L}$$

2. Noise (assuming the white noise power spectral density (PSD) is kT)

$$N = \frac{kTF}{\tau}$$

3. Signal to Noise ratio (SNR) usually expressed in dB

$$SNR = \frac{P_r}{N}$$
 $SNR in dB = 10 \log_{10} \left(\frac{P_r}{N}\right)$

- 4. Maximal radar cross section (a is a characteristic length)
 - (a) corner reflectors (a is a characteristic length)

i. dihedral:
$$\sigma = \frac{8\pi a^4}{\lambda^2}$$

ii. trihedral: $\sigma = \frac{12\pi a^4}{\lambda^2}$

(b) planar surface of area A:

(b) planar surface of area A:
(c) right circular cylinder (radius a, height b):
(d) sphere of radius a:

$$\sigma = \frac{4\pi A^2}{\lambda^2}$$

 $\sigma = \frac{2\pi a b^2}{\lambda}$
 $\sigma = \pi a^2$

(d) sphere of radius a:

Standard Radar Frequency Letter-Band Nomenclature(IEEE Standard 521-1984)

Band	Frequency	Wavelength
L band	$1-2~\mathrm{GHz}$	$30.0{-}15.0~{\rm cm}$
S band	$2-4~\mathrm{GHz}$	$157.5~\mathrm{cm}$
C band	$4-8~\mathrm{GHz}$	$7.53.8~\mathrm{cm}$
X band	$8-12~\mathrm{GHz}$	$3.82.5~\mathrm{cm}$
Ku band	$12-18 \mathrm{~GHz}$	$2.51.7~\mathrm{cm}$
K band	$18-27~\mathrm{GHz}$	1.7 - 1.1 cm
Ka band	$27-40~\mathrm{GHz}$	$1.10.75~\mathrm{cm}$
V band	$40-75~\mathrm{GHz}$	0.75-0.40 cm
W band	75–110 GHz	0.40–0.27 cm

• R_t Range from transmitter to target (m)

- T effective noise temperature (°K)
- k_B Boltzmann's constant $\approx 1.38 \times 10^{-23} \frac{\text{J}}{\text{K}}$
- λ Radar operating frequency wavelength (m)
- σ Target radar cross section (m²)
- τ pulse duration (s)

Contributed by Dan Zwillinger.