Coupled-analogues of Functions and Operations
Contributed by Dan Zwillinger.
Many of the following coupled analogues are related to the usual g analogues via the substitution xk = 1 — g.
e Functions
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1. The coupled-logarithm is defined for z > 0 by: In,(z) =

This function has the following properties:
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2. The coupled-exponential is defined by:
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This function has the following properties:
1. z = r
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3. The coupled-expectation of a function f(x) given a probability distribution p(x) is
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This allows the following definitions: coupled-mean = @, = E, [z], coupled-variance= 7. =

E. [(z — p)?]. In the limit of £ — 0 this reduces to the usual definition of mean and variance.
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e Probability concepts
1. The coupled-entropy (or Tsallis entropy) of the probabilities p = (p1,p2,...,pn) is
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2. The coupled-entropy (or Tsallis entropy) of the continous probability distribution f(x) is

o= (e [ )

3. The coupled-Gaussian probability density is given by
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This is the usual Gaussian when x = 0, has compact support for £ > 0, decays asymptotically as
a power law for —2 < k < 0, and is equal to the Student-t distribution with v = —QLH’”” degrees of
freedom.

. The coupled-Gaussian random variable.

A random variable X having a coupled-Gaussian distribution with coupled-mean f,, and coupled-
variance 72 is denoted X ~ N, ([i,.,Tx)-
— A standard coupled-Gaussian is N (0,1)

— Coupled-Gaussian deviates: Given two independent random deviates {Uy, Uz} from the uni-
form distribuion on [0, 1] two independent deviations from a standard coupled-Gaussian are

given by
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where k' = g;—i This is the same as the Box—Muller technique when x — 0.

e Operations

1.

. Coupled-subtraction is defined by: z 6,y =

Coupled-addition is defined by: = G,y = x + y + kzy
Note the properties:
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Coupled-multiplication is defined by: z ®, y = (" + y* — 1)”“
Note the properties:
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Coupled-division is defined by: z @, y = (27 — y? + 1)/*

. Differentiation rules:
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. Integration rules:
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